The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex

302Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mutations in the presenilin (PS) genes are linked to early onset familial Alzheimer's disease (FAD). PS-1 proteins are proteolytically processed by an unknown protease to two stable fragments of ~30 KDa (N- terminal fragment (NTF)) and ~20 kDa (C-terminal fragment (CTF)) (Thinakaran, G., Borchelt, D.R., Lee, M. K., Slunt, H.H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A.I., Gandy, S. E., Jenkins, N.A., Copeland, N.G., Price, D.L., and Sisodia, S.S. (1996) Neuron 17, 181-190). Here we show that the CTF and NTF of PS-1 bind to each other. Fractionating proteins from 3-[(3- cholamidopropy)dimethylammonio]-1-propanesulfonic acid-extracted membrane preparations by velocity sedimentation reveal a high molecular mass SDS and Triton X-100-sensitive complex of approximately 100-150 kDa. To prove if both proteolytic fragments of PS-1 are bound to the same complex, we performed co- immunoprecipitations using multiple antibodies specific to the CTF and NTF of PS-1. These experiments revealed that both fragments of PS-1 occur as a tightly bound non-covalent complex. Upon overexpression, unclipped wild type PS-1 sediments at a lower molecular weight in glycerol velocity gradients than the endogenous fragments. In contrast, the non-cleavable, FAD- associated PS-1 Δexon 9 sediments at a molecular weight similar to that observed for the endogenous proteolytic fragments. This result may indicate that the Δexon 9 mutation generates a mutant protein that exhibits biophysical properties similar to the naturally occurring PS-1 fragments. This could explain the surprising finding that the Δexon 9 mutation is functionally active, although it cannot be proteolytically processed (Baumeister, R., Leimer, U., Zwekcbronner, I., Jakuber, C., Grunberg, J., Haass, C. (1997) Genes and Function 1, 149-159; Levitan, D., Doyle, T., Brousseau, D., Lee, M., Thinakaran, G., Slunt, H., Sisodia, S., and Greenwald, I. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 14940-14944). Formation of a high molecular weight complex of PS-1 composed of both endogenous PS-1 fragments may also explain the recent finding that FAD- associated mutations within the N-terminal portion of PS-1 result in the hyperaccumulation not only of the NTF but also of the CTF (Lee, M. K., Borchelt, D. R., Kim G., Thinakaran, G., Slint, H. H., Ratovitski, T., Martin, L. J., Kittur, A., Gandy, S., Levey, A. I., Jenkins, N., Copeland, N., Price, D. L., and Sisodia, S. S. (1997) Nat. Med. 3, 756-760). Moreover, these results provide a model to understand the highly regulated expression and processing of PS proteins.

Cite

CITATION STYLE

APA

Capell, A., Grünberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., … Haass, C. (1998). The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. Journal of Biological Chemistry, 273(6), 3205–3211. https://doi.org/10.1074/jbc.273.6.3205

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free