PD-1 restrains IL-17A production from γδ T cells to modulate acute radiation-induced lung injury

9Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Background: Combining radiotherapy (RT) with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors has been shown to enhance anti-tumor effects in the treatment of non-small cell lung carcinoma (NSCLC). Pulmonary toxicity is a major adverse effect of thoracic RT in NSCLC patients, whether it is administered alone or in combination with PD-1/PD-L1 inhibitors. This study aimed to evaluate the potential pulmonary toxicity of RT combined with concurrent PD-1 inhibitor and to clarify the underlying mechanisms. Methods: Radiation-induced lung injury (RILI) was induced in C57BL/6 mice by given 24 Gy in three fractions on consecutive days, with or without concurrent injection of anti-PD-1 antibody. On days 3, 7, 14, and 28 after the first exposure to irradiation, lung tissue and peripheral blood samples were collected from the mice. Histological injury was analyzed, and inflammatory cell infiltration and interleukin (IL)-17A production in the lung tissues were quantified. Results: Mice that received irradiation with concurrent administration of anti-PD-1 antibody had the highest histological score for RILI. In the murine lung tissues, the levels of PD-1 and IL-17A expression were increased in γδ T cells but not in the other CD3+ T cells after irradiation. Concurrent blockade of PD-1 enhanced IL-17A production from γδ T cells in the lung tissues after irradiation. In the mice with acute RILI, concurrent administration of anti-PD-1 antibody exaggerated pulmonary inflammation, with significantly increased levels of neutrophilic infiltration and IL-17A detected in both the lung and blood. Conclusions: PD-1 could restrain IL-17A production from γδ T cells to modulate acute RILI. The concurrent administration of anti-PD-1 antibody aggravates the severity of acute RILI. More attention should be paid to pulmonary toxicity in patients undergoing thoracic RT with concurrent anti-PD-1 immunotherapy.

Cite

CITATION STYLE

APA

Sheng, Y., Chen, K., Jiang, W., Wu, Z., Zhang, W., Jing, H., … Ren, H. (2021). PD-1 restrains IL-17A production from γδ T cells to modulate acute radiation-induced lung injury. Translational Lung Cancer Research, 10(2), 685–698. https://doi.org/10.21037/tlcr-20-838

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free