It is widely accepted that new neurons are generated throughout life, which is called adult neurogenesis, in limited regions of the adult mammalian brain, such as the hippocampal dentate gyrus and subventricular zone. In these regions, neural stem cells (NSCs) and neural progenitor cells (NPCs) have been reported to proliferate and produce postmitotic neurons. Adult neurogenesis in these regions is influenced by various factors. For examples, antidepressant treatments, learning and memory, and environmental enrichment prompt to increase generation and survival of new neurons. Moreover, pathological processes, such as neuroinflammation, stroke or epilepsy, are able to induce proliferation and differentiation of NSCs and NPCs. In contrast, down-regulation of adult neurogenesis is associated with alcohol abuse, high stress level, some drugs, such as cytostatics, COX-2 inhibitors, and opioides. Recently, adult neurogenesis in the cerebral cortex is becoming clear gradually, and cortical NSCs and NPCs are identified in a few mammals. However, it remains largely unknown what factors can regulate adult neurogenesis in the cerebral cortex. This review focuses on the effects of regulating factors on cortical adult neurogenesis, such as brain damages, aging and certain drugs, and we discuss implications of cortical adult neurogenesis for brain diseases and damages.
CITATION STYLE
Ohira, K. (2018). Regulation of Adult Neurogenesis in the Cerebral Cortex. Journal of Neurology & Neuromedicine, 3(4), 59–64. https://doi.org/10.29245/2572.942x/2018/4.1192
Mendeley helps you to discover research relevant for your work.