Downhill from Austin and Ely to Las Vegas: U-Pb detrital zircon suites from the Eocene-Oligocene Titus Canyon Formation and associated strata, Death Valley, California

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In a reconnaissance investigation aimed at interrogating the changing topography and paleogeography of the western United States prior to Basin and Range faulting, a preliminary study made use of U-Pb ages of detrital zircon suites from 16 samples from the Eocene-Oligocene Titus Canyon Formation, its overlying units, and correlatives near Death Valley. The Titus Canyon Formation unconformably overlies Neoproterozoic to Devonian strata in the Funeral and Grapevine Mountains of California and Nevada. Samples were collected from (1) the type area in Titus Canyon, (2) the headwaters of Monarch Canyon, and (3) unnamed Cenozoic strata exposed in a klippe of the Boundary Canyon fault in the central Funeral Mountains. Red beds and conglomerates at the base of the Titus Canyon Formation at locations 1 and 2, which contain previously reported 38-37 Ma fossils, yielded mostly Sierran batholith-age detrital zircons (defined by Triassic, Jurassic, and Cretaceous peaks). Overlying channelized fluvial sandstones, conglomerates, and minor lacustrine shale, marl, and limestone record an abrupt change in source region around 38-36 Ma or slightly later, from more local, Sierran arc-derived sediment to extraregional sources to the north. Clasts of red radiolarian-bearing chert, dark radiolarian chert, and quartzite indicate sources in the region of the Golconda and Roberts Mountains allochthons of northern Nevada. Sandstones intercalated with conglomerate contain increasing proportions of Cenozoic zircon sourced from south-migrating, caldera-forming eruptions at the latitude of Austin and Ely in Nevada with maximum depositional ages (MDAs) ranging from 36 to 24 Ma at the top of the Titus Canyon Formation. Carbonate clasts and ash-rich horizons become more prevalent in the overlying conglomeratic Panuga Formation (which contains a previously dated 15.7 Ma ash-flow tuff). The base of the higher, ash-dominated Wahguyhe Formation yielded a MDA of 14.4 Ma. The central Funeral Mountains section exposes a different sequence of units that, based on new data, are correlative to the Titus Canyon, Panuga, and Wahguyhe Formations at locations 1 and 2. An ash-flow tuff above its (unexposed) base provided a MDA of 34 Ma, and the youngest sample yielded a MDA of 12.7 Ma. The striking differences between age-correlative sections, together with map-based evidence for channelization, indicate that the Titus Canyon Formation and overlying units likely represent fluvial channel, floodplain, and lacustrine deposits as sediments mostly bypassed the region, moving south toward the Paleogene shoreline in the Mojave Desert. The profound changes in source regions and sedimentary facies documented in the Titus Canyon Formation took place during ignimbrite flareup magmatism and a proposed eastward shift of the continental divide from the axis of the Cretaceous arc to a new divide in central Nevada in response to thermal uplift and addition of magma to the crust. This uplift initiated south-flowing fluvial systems that supplied sediments to the Titus Canyon Formation and higher units.

Cite

CITATION STYLE

APA

Miller, E. L., Raftrey, M. E., & Snee, J. E. L. (2022). Downhill from Austin and Ely to Las Vegas: U-Pb detrital zircon suites from the Eocene-Oligocene Titus Canyon Formation and associated strata, Death Valley, California. In Special Paper of the Geological Society of America (Vol. 555, pp. 359–378). Geological Society of America. https://doi.org/10.1130/2021.2555(14)

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free