This paper proposed a new perspective to study the evolution of regional collaborative innovation based on complex network theory. The two main conceptions of evolution, "graph with dynamic features" and "network evolution," have been provided in advance. Afterwards, we illustrate the overall architecture and capability model of the regional collaborative innovation system, which contains several elements and participants. Therefore, we can definitely assume that the regional collaborative innovation system could be regarded as a complex network model. In the proposed evolutionary algorithm, we consider that each node in the network could only connect to less than a certain amount of neighbors, and the extreme value is determined by its importance. Through the derivation, we have created a probability density function as the most important constraint and supporting condition of our simulation experiments. Then, a case study was performed to explore the network topology and validate the effectiveness of our algorithm. All the raw datasets were obtained from the official website of the National Bureau of Statistic of China and some other open sources. Finally, some meaningful recommendations were presented to policy makers, especially based on the experimental results and some common conclusions of complex networks.
CITATION STYLE
Wang, K., & Sun, D. (2016). An Evolutionary Algorithm of the Regional Collaborative Innovation Based on Complex Network. Discrete Dynamics in Nature and Society, 2016. https://doi.org/10.1155/2016/5061279
Mendeley helps you to discover research relevant for your work.