Effect of Bi3+ Doping on the Electronic Structure and Thermoelectric Properties of (Sr0.889-xLa0.111Bix)TiO2.963: First-Principles Calculations

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The electronic structure and thermoelectric properties of Bi3+-doped (Sr0.889-xLa0.111Bix)TiO2.963 were studied by the first principles method. Doping Bi3+ can increase the cell parameters, cell asymmetry and band gap. With increasing Bi3+ content, the asymmetry of DOS relative to the Fermi level increases, which results in an enhanced Seebeck coefficient, increasing carrier mobility and decreasing carrier concentration. An appropriate Bi3+-doping concentration (7.4–14.8%) can increase the lattice distortion and reduce the lattice thermal conductivity of the material. An appropriate Bi3+-doping concentration (7.4%) can effectively optimize the electrical transport performance and improve the thermoelectric properties of strontium titanate. The optimal Bi3+-doping concentration is 7.4%, and Sr0.815La0.111Bi0.074TiO2.963 obtains a maximum ZT of 0.48. This work shows the mechanism of Bi3+ doping in enhancing the thermoelectric properties of strontium titanate.

Cite

CITATION STYLE

APA

Gong, L., Zhang, P., Lou, Z., Wei, Z., Wu, Z., Xu, J., … Gao, F. (2023). Effect of Bi3+ Doping on the Electronic Structure and Thermoelectric Properties of (Sr0.889-xLa0.111Bix)TiO2.963: First-Principles Calculations. Crystals, 13(2). https://doi.org/10.3390/cryst13020178

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free