Using the first-principle calculation that is based on the density functional theory (DFT), our group gains some insights of the structural, electronic and optical properties of two brand new types of BiOI/TiO2 heterojunctions: 1I-terminated BiOI [001] surface/TiO2 (1I-BiOI/TiO2) and BiO-terminated BiOI [001] surface/TiO2 (BiO-BiOI/TiO2). The calculation illustrates that BiOI/TiO2 heterojunction has excellent mechanical stability, and it shows that there is a great possibility for the BiOI/TiO2 heterojunction to be used in visible-light range, hence the photocatalytic ability can be enhanced dramatically. Especially, from the calculation, we discovered that there are two specific properties: the band-gap of 1I-BiOI/TiO2 heterojunction reduces to 0.28 eV, and the BiO-BiOI/TiO2 semiconductor material changes to n-type. The calculated band offset (BOs) for 1I-BiOI/TiO2 heterojunction indicates that the interfacial structure contributes a lot to a suitable band alignment which can disperse the photo-generated carriers into the opposite sides of the interface, so this could effectively weaken the electron-hole recombination. Meanwhile, the built-in potential around the interface accelerates the movement of the photo-generated electron-hole pairs. We believe this is the reason that the BiOI/TiO2 material shows perfect photocatalytic performance. This paper can provide theoretical support for the related research, especially the further research of the BiOI-based material.
CITATION STYLE
Qu, Z., Su, Y., Sun, L., Liang, F., & Zhang, G. (2020). Study of the structure, electronic and optical properties of BiOI/Rutile-TiO2 heterojunction by the first-principle calculation. Materials, 13(2). https://doi.org/10.3390/ma13020323
Mendeley helps you to discover research relevant for your work.