We propose a methodology employing an interpolation technique on the Second Simulation of a Satellite Signal (6S) look-up table (LUT) to improve surface reflectance retrieval using Himawari-8/Advanced Himawari Imager (AHI). A minimum curvature surface (MCS) technique was used to refine the 6S LUT, and the solar zenith angle (SZA) and viewing zenith angle (VZA) increments were narrowed by 0.5°. The interpolation processing time was relatively short, about 3172 s per channel, and the interpolated xa and xb were well represented by the changes in SZA and VZA. An evaluation of the interpolated xa and xb for six cases revealed a relative mean absolute error of less than 5% for all channels and cases; however, a slight difference was evident for higher values of SZA and VZA. To evaluate the surface reflectance, we compared the surface reflectance derived using 6S LUT with that calculated using 6S only. Application of the interpolated 6S LUT showed a lower relative root mean square error (RRMSE) of 0.65% to 9.29% for all channels, than before interpolation. The improvement in surface reflectance measurements increased with the SZA. For a SZA above 75°, the RRMSE improved significantly for all channels (by 11.33–45.1%). In addition, when the MCS method was applied, the surface reflectance measurements improved without spatial discontinuity and showed good agreement with 6S results in a linear profile analyses. Thus, the method proposed can improve LUT based surface reflectance measurements in less time and increase the availability of surface reflectance data based on geostationary satellites.
CITATION STYLE
Lee, K. S., Lee, C. S., Seo, M., Choi, S., Seong, N. H., Jin, D., … Han, K. S. (2020). Improvements of 6S Look-Up-Table Based Surface Reflectance Employing Minimum Curvature Surface Method. Asia-Pacific Journal of Atmospheric Sciences, 56(2), 235–248. https://doi.org/10.1007/s13143-019-00164-3
Mendeley helps you to discover research relevant for your work.