Here, we present the (element-specific) magnetic properties and cation ordering for ultra-thin Co-rich cobalt ferrite films. Two Co-rich Cox Fe3−x O4 films with different stoichiometry (x = 1.1 and x = 1.4) have been formed by reactive solid phase epitaxy due to post-deposition annealing from epitaxial CoO/Fe3 O4 bilayers deposited before on Nb-doped SrTiO3 (001). The electronic structure, stoichiometry and homogeneity of the cation distribution of the resulting cobalt ferrite films were verified by angle-resolved hard X-ray photoelectron spectroscopy. From X-ray magnetic circular dichroism measurements, the occupancies of the different sublattices were determined using charge-transfer multiplet calculations. For both ferrite films, a partially inverse spinel structure is found with increased amount of Co3+ cations in the low-spin state on octahedral sites for the Co1.4 Fe1.6 O4 film. These findings concur with the results obtained by superconducting quantum interference device measurements. Further, the latter measurements revealed the presence of an additional soft magnetic phase probably due to cobalt ferrite islands emerging from the surface, as suggested by atomic force microscope measurements.
CITATION STYLE
Thien, J., Bahlmann, J., Alexander, A., Ruwisch, K., Rodewald, J., Pohlmann, T., … Küpper, K. (2022). Cationic ordering and its influence on the magnetic properties of co-rich cobalt ferrite thin films prepared by reactive solid phase epitaxy on nb-doped srtio3 (001). Materials, 15(1). https://doi.org/10.3390/ma15010046
Mendeley helps you to discover research relevant for your work.