Numerical modeling of the iron ore sintering process

66Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Iron ore sintering involves the movement of a flame front down a particulate bed, and a series of physicochemical reactions over a large temperature range. In the literature simple and more sophisticated iron ore sintering models have been reported. In this paper a more comprehensive numerical model which incorporates most of the significant processes and heat transfer modes proposed in earlier models is given. Therefore, sub-models are available to describe the relationship between airflow rate through the bed and flame front speed, the evaporation and condensation of water ahead of the front, the calcination of fluxes nearer to the front, the reactions that occur in the front and cooling of the bed with the departure of the front. Improvements were made to several areas - such as coke combustion, and the melting and solidification processes - to more accurately quantify the phenomena involved. More recent progress in understanding the fundamentals of sintering from BHP Billiton studies have also been incorporated into the model. To date, twelve sinter pot tests have been used for validation studies. Reasonably good agreement was obtained between predicted and measured results - in areas such as bed temperature profiles and waste gas temperature and compositions. Work is continuing to further improve the model, and broaden the validation work to include other bed temperature profile parameters © 2012 ISIJ.

Cite

CITATION STYLE

APA

Zhou, H., Zhao, J. P., Loo, C. E., Ellis, B. G., & Cen, K. F. (2012). Numerical modeling of the iron ore sintering process. ISIJ International, 52(9), 1550–1558. https://doi.org/10.2355/isijinternational.52.1550

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free