Background: Bisphenol AF has been acknowledged to be useful for the production of CF3-containing polymers with improved chemical, thermal, and mechanical properties. Because of the lack of adequate toxicity data, bisphenol AF has been nominated for comprehensive toxicological characterization. Objectives: We aimed to determine the relative preference of bisphenol AF for the human nuclear estrogenic receptors ERα and ERβ and the bisphenol A-specific estrogen-related receptor ERRγ, and to clarify structural characteristics of receptors that influence bisphenol AF binding. Methods: We examined receptor-binding activities of bisphenol AF relative to [3H]17β-estradiol (for ERα and ERβ) and [3H]bisphenol A (for ERRγ). Functional luciferase reporter gene assays were performed to assess receptor activation in HeLa cells. Results: We found that bisphenol AF strongly and selectively binds to ERs over ERRγ. Furthermore, bisphenol AF receptor-binding activity was three times stronger for ERβ [IC50 (median inhibitory concentration) = 18.9 nM] than for ERα. When examined using a reporter gene assay, bisphenol AF was a full agonist for ERα. In contrast, it was almost completely inactive in stimulating the basal constitutive activity of ERβ. Surprisingly, bisphenol AF acted as a distinct and strong antagonist against the activity of the endogenous ERβ agonist 17β-estradiol. Conclusion: Our results suggest that bisphenol AF could function as an endocrine-disrupting chemical by acting as an agonist or antagonist to perturb physiological processes mediated through ERα and/or ERβ.
CITATION STYLE
Matsushima, A., Liu, X., Okada, H., Shimohigashi, M., & Shimohigashi, Y. (2010). Bisphenol AF is a full agonist for the estrogen receptor ERα but a highly specific antagonist for ERβ. Environmental Health Perspectives, 118(9), 1267–1272. https://doi.org/10.1289/ehp.0901819
Mendeley helps you to discover research relevant for your work.