Asymmetric Impacts of El Niño and La Niña on the Pacific–South America Teleconnection Pattern

16Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

El Niño–Southern Oscillation (ENSO) has a huge influence on Antarctic climate variability via Rossby wave trains. In this study, the asymmetry of the ENSO teleconnection in the Southern Hemisphere, together with the mechanisms involved, is systematically investigated. In four reanalysis datasets, the composite atmospheric circulation anomaly in austral winter over the Amundsen Sea during La Niña is situated more to the west than during El Niño. This asymmetric feature is reproduced by ECHAM5.3.2 forced with both composite and idealized symmetric sea surface temperature anomalies. Utilizing a linear baroclinic model, we find that ENSO-triggered circulation anomalies in the subtropics can readily extract kinetic energy from the climatological mean flow and develop efficiently at the exit of the subtropical jet stream (STJ). The discrepancy in the location of the STJ between El Niño and La Niña causes asymmetric circulation responses by affecting the energy conversion. During El Niño years, anomalous tropical convective precipitation increases the meridional temperature gradient, which in turn leads to the strengthening of the STJ and the eastward movement of the jet core and jet exit in the Pacific. With the movement of the STJ exit, the wave train tends to develop over the eastern region. The opposite is the case during La Niña when the westward shift of the jet exit favors the development of the wave train in the western region. Our findings expand the current understanding regarding ENSO teleconnection.

Cite

CITATION STYLE

APA

Wang, Y., Huang, G., Hu, K., Tao, W., Li, X., Gong, H., … Zhang, W. (2022). Asymmetric Impacts of El Niño and La Niña on the Pacific–South America Teleconnection Pattern. Journal of Climate, 35(6), 1825–1838. https://doi.org/10.1175/JCLI-D-21-0285.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free