This paper deals with the synthesis conditions–defect formation relationship in zeolites. Silicalite-1 (MFI-type) is used as a model material. Samples synthesized from a system with high basicity (at 100 °C), a system with moderate basicity (at 150 °C), and a fluoride-containing system in neutral medium (at 170 °C) are compared. Well-crystallized materials with sizes ≈0.1, 1–10, and 30–40 µm are obtained. The samples are analyzed by complementary methods providing information on the short- and long-range order in the zeolite framework. A strong correlation between the number of point defects in the zeolite framework and preparation conditions is established. Silicalite-1 synthesized under mild synthesis conditions from a highly basic system exhibits a larger number of framework defects and thus low hydrophobicity. Further, the calcined samples are subjected to aluminum and silicon incorporation by postsynthesis treatment. The Al/Si incorporation in the zeolite framework and its impact on the physicochemical properties is studied by XRD, TEM/SEM, solid-state NMR, FTIR, and thermogravimetric analyses. The defects healing as a function of the number of point defects in the initial material and zeolite crystal size is evaluated. The results of this study will serve for fine-tuning zeolite properties by in situ and postsynthesis methods.
CITATION STYLE
Palčić, A., Moldovan, S., El Siblani, H., Vicente, A., & Valtchev, V. (2022). Defect Sites in Zeolites: Origin and Healing. Advanced Science, 9(4). https://doi.org/10.1002/advs.202104414
Mendeley helps you to discover research relevant for your work.