Bamboo is an alternative sustainable material for use in product design and has been incorporated into the concepts of eco-design. Here, we investigated the mechanical properties and morphologies of low density polyethylene (LDPE)/bamboo flour (BF) composites that were modified with polyethylene-graft- maleic anhydride (PE-g-MA) and glycerol. Scanning electron microscopy (SEM) and tensile tests of the composites demonstrated poor adhesion between the filler and matrix. Contact angle measurement showed that the surface of LDPE was modified by the presence of the load. The thermal stability of the composites was studied by measuring the oxidation induction time (OIT). Preliminary bacterial penetration tests were performed using culture inoculums of E. coli and S. aureus to investigate the natural antibacterial and bacteriostatic properties attributed to bamboo. Furthermore, bamboo may have interesting antioxidant activity with potential for use in food packaging applications.
CITATION STYLE
Delgado, P. S., Lana, S. L. B., Ayres, E., Patrício, P. O. S., & Oréfice, R. L. (2012). The potential of bamboo in the design of polymer composites. Materials Research, 15(4), 639–644. https://doi.org/10.1590/S1516-14392012005000073
Mendeley helps you to discover research relevant for your work.