Temperature sensor based on periodically tapered optical fibers

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

In this paper, the fabrication and characterization of a temperature sensor based on periodically tapered optical fibers (PTOF) are presented. The relation between the geometry of the sensors and sensing ability was investigated in order to find the relatively simple structure of a sensor. Four types of PTOF structures with two, four, six and eight waists were manufactured with the fusion splicer. For each PTOF type, the theoretical free spectral range (FSR) was calculated and compared with measurements. The experiments were conducted for a temperature range of 20–70 °C. The results proved that the number of the tapered regions in PTOF is crucial, because some of the investigated structures did not exhibit the temperature response. The interference occurring inside the structures with two and four waists was found be too weak and, therefore, the transmission dip was hardly visible. We proved that sensors with a low number of tapered regions cannot be considered as a temperature sensor. Sufficiently more valuable results were obtained for the last two types of PTOF, where the sensor’s sensitivity was equal to 0.07 dB/°C with an excellent linear fitting (R2> 0.99). The transmission dip shift can be described by a linear function (R2 > 0.97) with a slope α > 0.39 nm/°C.

Cite

CITATION STYLE

APA

Guzowski, B., & Łakomski, M. (2021). Temperature sensor based on periodically tapered optical fibers. Sensors, 21(24). https://doi.org/10.3390/s21248358

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free