These studies were conducted to determine the effects of oxidative stress on human T cell differentiation and polarization into Th1 or Th2 phenotypes. Highly purified naive CD4+ T cells were isolated from PBMC of healthy, nonatopic donors. CD4+ T cells were stimulated with anti-CD3 and anti-CD28 mAb in the presence or absence of oxidative stress as supplied by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates a low level of superoxide anion. Increases in cellular superoxide were observed by exposure to DMNQ. Exposure of unpolarized CD4+ T cells to IL-12 or IL-4 resulted in a Th1 or Th2 phenotype, respectively. T cells stimulated in the absence of polarizing cytokines secreted modest amounts of IFN-γ and TNF-α. Cells stimulated in the continuous presence of 5 μM DMNQ, displayed a marked up-regulation in Th2 cytokines, including IL-4, IL-5, and IL-13, but not the Th1 cytokine IFN-γ. Th2 responses were blunted by concomitant exposure to thiol antioxidants. Long-term exposure of T cells to DMNQ resulted in growth of cells expressing CCR4, and a decrease in cells expressing CXCR3, indicating phenotypic conversion to Th2 cells. These results suggest that oxidative stress favors a Th2-polarizing condition.
CITATION STYLE
King, M. R., Ismail, A. S., Davis, L. S., & Karp, D. R. (2006). Oxidative Stress Promotes Polarization of Human T Cell Differentiation Toward a T Helper 2 Phenotype. The Journal of Immunology, 176(5), 2765–2772. https://doi.org/10.4049/jimmunol.176.5.2765
Mendeley helps you to discover research relevant for your work.