It is generally believed that students should use multiple representations in solving certain physics problems, and earlier work in PER has begun to outline how experts and novices differ in their use of multiple representations. In this study, we build on this foundation by interviewing expert and novice physicists as they solve two types of multiple representation problems: those in which multiple representations are provided for them and those in which the students must construct their own representations. We analyze in detail the types of representations subjects use and the order and manner in which they are used. Expert and novice representation use is surprisingly similar in some ways, especially in that both experts and novices make significant use of multiple representations. Some significant differences also emerge. Experts are more flexible in terms of starting point and move between the available representations more quickly, and novices tend to move between more representations in total. In addition, we find that an examination of how often and when multiple representations are used is inadequate to fully characterize a problem-solving episode; one must also consider the purpose behind the use of the available representations. This analysis of how experts and novices use representations sharpens the differences between the two groups, demonstrates analysis techniques that may be useful in future work, and suggests possible paths for instruction. © 2008 The American Physical Society.
CITATION STYLE
Kohl, P. B., & Finkelstein, N. D. (2008). Patterns of multipe representation use by experts and novices during physics problem solving. Physical Review Special Topics - Physics Education Research, 4(1). https://doi.org/10.1103/PhysRevSTPER.4.010111
Mendeley helps you to discover research relevant for your work.