Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands

N/ACitations
Citations of this article
63Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.

Cite

CITATION STYLE

APA

Poitras, T. B., Villarreal, M. L., Waller, E. K., Nauman, T. W., Miller, M. E., & Duniway, M. C. (2018). Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands. Journal of Arid Environments, 153, 76–87. https://doi.org/10.1016/j.jaridenv.2017.12.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free