Background: MicroRNAs have been shown to be important regulators of the immune response and the development of the immune system. It was reported that microRNA-125b (miR-125b) was down-regulated in macrophages challenged with endotoxin. However, little is known about the function and mechanism of action of miR-125b in macrophage activation. Macrophages use L-arginine to synthesize nitric oxide (NO) through inducible NO synthase (iNOS), and the released NO contributes to the tumoricidal activity of macrophages. Methods: Luciferase reporter assays were employed to validate regulation of a putative target of miR-125b. The effect of miR-125b on endogenous levels of this target were subsequently confirmed via Western blot. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine the expression level of miR-125b in macrophage. MTS assays were conducted to explore the impact of miR-125b overexpression on the cell viability of 4T1 cells. Results: Here, we demonstrate that mmu-miR-125b overexpression suppresses NO production in activated macrophages and that LPS-activated macrophages with overexpressed mmu-miR-125b promote 4T1 tumor cell proliferation in vitro and 4T1 tumor growth in vivo. CCNA2 and eEF2K are the direct and functional targets of mmu-miR-125b in macrophages; CCNA2 and eEF2K expression was knocked down, which mimicked the mmu-miR-125b overexpression phenotype. Conclusions: These data suggest that mmu-miR-125b decreases NO production in activated macrophages at least partially by suppressing eEF2K and CCNA2 expression.
CITATION STYLE
Xu, Z., Zhao, L., Yang, X., Ma, S., Ge, Y., Liu, Y., … Zheng, D. (2016). Mmu-miR-125b overexpression suppresses NO production in activated macrophages by targeting eEF2K and CCNA2. BMC Cancer, 16(1). https://doi.org/10.1186/s12885-016-2288-z
Mendeley helps you to discover research relevant for your work.