Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance

94Citations
Citations of this article
107Readers
Mendeley users who have this article in their library.

Abstract

The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn 916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha-beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems. © 2009 The Author(s).

Cite

CITATION STYLE

APA

McMahon, S. A., Roberts, G. A., Johnson, K. A., Cooper, L. P., Liu, H., White, J. H., … Dryden, D. T. F. (2009). Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Research, 37(15), 4887–4897. https://doi.org/10.1093/nar/gkp478

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free