Quantitative Causality, Causality-Aided Discovery, and Causal Machine Learning

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

It has been said, arguably, that causality analysis should pave a promising way to interpretable deep learning and generalization. Incorporation of causality into artificial intelligence algorithms, however, is challenged with its vagueness, nonquantitativeness, computational inefficiency, etc. During the past 18 years, these challenges have been essentially resolved, with the establishment of a rigorous formalism of causality analysis initially motivated from atmospheric predictability. This not only opens a new field in the atmosphere-ocean science, namely, information flow, but also has led to scientific discoveries in other disciplines, such as quantum mechanics, neuroscience, financial economics, etc., through various applications. This note provides a brief review of the decade-long effort, including a list of major theoretical results, a sketch of the causal deep learning framework, and some representative real-world applications pertaining to this journal, such as those on the anthropogenic cause of global warming, the decadal prediction of El Niño Modoki, the forecasting of an extreme drought in China, among others.

Cite

CITATION STYLE

APA

Liang, X. S., Chen, D., & Zhang, R. (2023). Quantitative Causality, Causality-Aided Discovery, and Causal Machine Learning. Ocean-Land-Atmosphere Research, 2. https://doi.org/10.34133/olar.0026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free