Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell–specific Traf3−/− and littermate control mice. We found that multiple metabolites, lipids, and enzymes regulated by TRAF3 in B cells are clustered in the choline metabolic pathway. Using stable isotope labeling, we demonstrated that phosphocholine and phosphatidylcholine biosynthesis was markedly elevated in Traf3−/− mouse B cells and decreased in TRAF3-reconstituted human multiple myeloma cells. Furthermore, pharmacological inhibition of choline kinase α, an enzyme that catalyzes phosphocholine synthesis and was strikingly increased in Traf3−/− B cells, substantially reversed the survival phenotype of Traf3−/− B cells both in vitro and in vivo. Taken together, our results indicate that enhanced phosphocholine and phosphatidylcholine synthesis supports the prolonged survival of Traf3−/− B lymphocytes. Our findings suggest that TRAF3-regulated choline metabolism has diagnostic and therapeutic value for B cell malignancies with TRAF3 deletions or relevant mutations.
CITATION STYLE
Gokhale, S., Lu, W., Zhu, S., Liu, Y., Hart, R. P., Rabinowitz, J. D., & Xie, P. (2020). Elevated Choline Kinase α–Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. The Journal of Immunology, 204(2), 459–471. https://doi.org/10.4049/jimmunol.1900658
Mendeley helps you to discover research relevant for your work.