Normalization in unsupervised segmentation parameter optimization: A solution based on local regression trend analysis

23Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

In object-based image analysis (OBIA), the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO). A popular USPO method does this through the optimization of a "global score" (GS), which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.

Cite

CITATION STYLE

APA

Georganos, S., Lennert, M., Grippa, T., Vanhuysse, S., Johnson, B., & Wolff, E. (2018). Normalization in unsupervised segmentation parameter optimization: A solution based on local regression trend analysis. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free