Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning

15Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Seed quality affects crop yield and the quality of agricultural products, and traditional identification methods are time-consuming, complex, and irreversibly destructive. This study aims to establish a fast, non-destructive, and effective approach for defect detection in maize seeds based on hyperspectral imaging (HSI) technology combined with deep learning. Raw spectra collected from maize seeds (200 each healthy and worm-eaten) were pre-processed using detrending (DE) and multiple scattering correction (MSC) to highlight the spectral differences between samples. A convolutional neural network architecture (CNN-FES) based on a feature selection mechanism was proposed according to the importance of wavelength in the target classification task. The results show that the subset of 24 feature wavelengths selected by the proposed CNN-FES can capture important feature information in the spectral data more effectively than the conventional successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) algorithms. In addition, a convolutional neural network architecture (CNN-ATM) based on an attentional classification mechanism was designed for one-dimensional spectral data classification and compared with three commonly used machine learning methods, linear discriminant analysis (LDA), random forest (RF), and support vector machine (SVM). The results show that the classification performance of the designed CNN-ATM on the full wavelength does not differ much from the above three methods, and the classification accuracy is above 90% on both the training and test sets. Meanwhile, the accuracy, sensitivity, and specificity of CNN-ATM based on feature wavelength modeling can reach up to 97.50%, 98.28%, and 96.77% at the highest, respectively. The study shows that hyperspectral imaging-based defect detection of maize seed is feasible and effective, and the proposed method has great potential for the processing and analysis of complex hyperspectral data.

Cite

CITATION STYLE

APA

Xu, P., Sun, W., Xu, K., Zhang, Y., Tan, Q., Qing, Y., & Yang, R. (2023). Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning. Foods, 12(1). https://doi.org/10.3390/foods12010144

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free