Clinical named-entity recognition: A short comparison

Citations of this article
Mendeley users who have this article in their library.
Get full text


The adoption of electronic health records has increased the volume of clinical data, which has opened an opportunity for healthcare research. There are several biomedical annotation systems that have been used to facilitate the analysis of clinical data. However, there is a lack of clinical annotation comparisons to select the most suitable tool for a specific clinical task. In this work, we used clinical notes from the MIMIC-III database and evaluated three annotation systems to identify four types of entities: (1) procedure, (2) disorder, (3) drug, and (4) anatomy. Our preliminary results demonstrate that BioPortal performs well when extracting disorder and drug. This can provide clinical researchers with real-clinical insights into patient's health patterns and it may allow to create a first version of an annotated dataset.




Lossio-Ventura, J. A., Boussard, S., Morzan, J., & Hernandez-Boussard, T. (2019). Clinical named-entity recognition: A short comparison. In Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 (pp. 1548–1550). Institute of Electrical and Electronics Engineers Inc.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free