Introduction: Photodynamic therapy (PDT), which induces tissue damage by exposing tissue to a specific wavelength of light in the presence of a photosensitizer and oxygen, is a promising alternative treatment that could be used as an adjunct to chemotherapy and surgery in oncology. Cell-penetrating peptides (CPPs) with high arginine content, such as protamine, have membrane translocation and lysosome localization activities. They have been used in an extensive range of drug delivery applications. Methods: We conjugated cell-penetrating peptides (CPPs) with methylene blue (MB) and then purification by FPLC. Synthesis structure was characterized by the absorbance spec-trum, FPLC, Maldi-TOF, and then evaluated cell viability by cytotoxicity assay after photo-dynamic therapy (PDT) assay. An uptake imaging assay was used to determine the sites of MB and MB-Pro in subcellular compartments. Results: In vitro assays showed that MB-Pro has more efficient photodynamic activities than MB alone for the colon cancer cells, owing to lysosome rupture causing the rapid necrotic cell death. In this study, we coupled protamine with MB for high efficacy PDT. The conjugates localized in the lysosomes and enhanced the efficiency of PDT by inducing necrotic cell death, whereas PDT with non-coupled MB resulted in only apoptotic processes. Discussion: Our research aimed to enhance PDT by engineering the photosensitizers using CPPs coupled with methylene blue (MB). MB alone permeates through the cell membrane and distributes into the cytoplasm, whereas coupling of MB dye with CPPs localizes the MB through an endocytic mechanism to a specific organelle where the localized conjugates enhance the generation of reactive oxygen species (ROS) and induce cell damage.
CITATION STYLE
Ser, J., Lee, J. Y., Kim, Y. H., & Cho, H. (2020). Enhanced efficacy of photodynamic therapy by coupling a cell-penetrating peptide with methylene blue. International Journal of Nanomedicine, 15, 5803–5811. https://doi.org/10.2147/IJN.S254881
Mendeley helps you to discover research relevant for your work.