Liver regeneration/repair is a compensatory regrowth following acute liver failure, and bone marrow-derived mesenchyme stem cell (BMSC) transplantation is an effective therapy that promotes liver regeneration/repair. Wnt1 inducible signaling pathway protein 2 (Wisp2) is highly expressed in BMSCs, however, its function remains unclear. In this work, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein -9 nuclease (CRISPR/Cas9) genome editing technology to knockdown Wisp2 in BMSCs, and these modified cells were then transplanted into rats which were induced by the 2-AAF/PH. By linking the expression of Cas9 to green fluorescent protein (GFP), we tracked BMSCs in the rats. Disruption of Wisp2 inhibited the homing of BMSCs to injured liver and aggravated liver damage as indicated by remarkably high levels of ALT and AST. Moreover, the key factor in BMSC transplantation, C-X-C chemokine receptor type 4 (Cxcr4), was down-regulated in the Wisp2 depleted BMSCs and had a lower expression in the livers of the corresponding rats. By tracing the GFP marker, more BMSCs were observed to differentiate into CD31 positive endothelial cells in the functional Wisp2 cells but less in the Wisp2 gene disrupted cells. In summary, Wisp2 promotes the homing of BMSCs through Cxcr4 related signaling during liver repair in rats.
CITATION STYLE
Qin, D., Yan, Y., Hu, B., Zhang, W., Li, H., Li, X., … Zhang, L. (2017). Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget, 8(58), 98823–98836. https://doi.org/10.18632/oncotarget.22006
Mendeley helps you to discover research relevant for your work.