In recent years, new programming techniques have been developed in the human-robot collaboration (HRC) field. For example, walk-through programming allows to program the robot in an easy and intuitive way. In this context, a modification of a portion of the trajectory usually requires the teaching of the path from the beginning. In this paper we propose a passivity-based method to locally change a trajectory based on a manual human correction. At the beginning the robot follows the nominal trajectory, encoded through the Dynamical Movement Primitives, by setting high control gains. When the human grasps the end-effector, the robot is made compliant and he/she can drive it along the correction. The correction is optimally joined to the nominal trajectory, resuming the path tracking. In order to avoid unstable behaviors, the variation of the control gains is performed exploiting energy tanks, preserving the passivity of the interaction. Finally, the correction is spatially fixed so that a variation in the boundary conditions (e.g., the initial/final points) does not affect the modification.
CITATION STYLE
Landi, C. T., Ferraguti, F., Fantuzzi, C., & Secchi, C. (2019). A passivity-based strategy for manual corrections in human-robot coaching. Electronics (Switzerland), 8(3). https://doi.org/10.3390/electronics8030320
Mendeley helps you to discover research relevant for your work.