Syntaxin 17, an ancient SNARE paralog, plays different and conserved roles in different organisms

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Mammalian syntaxin 17 (Stx17) has several roles in processes other than membrane fusion, including in mitochondrial division, autophagosome formation and lipid droplet expansion. In contrast to conventional syntaxins, Stx17 has a long C-terminal hydrophobic region with a hairpin-like structure flanked by a basic amino acid-enriched C-terminal tail. Although Stx17 is one of the six ancient SNAREs and is present in diverse eukaryotic organisms, it has been lost in multiple lineages during evolution. In the present study, we compared the localization and function of fly and nematode Stx17s expressed in HeLa cells with those of human Stx17. We found that fly Stx17 predominantly localizes to the cytosol and mediates autophagy, but not mitochondrial division. Nematode Stx17, on the other hand, is predominantly present in mitochondria and facilitates mitochondrial division, but is irrelevant to autophagy. These differences are likely due to different structures in the C-terminal tail. Non-participation of fly Stx17 and nematode Stx17 in mitochondrial division and autophagy, respectively, was demonstrated in individual organisms. Our results provide an insight into the evolution of Stx17 in metazoa.

Cite

CITATION STYLE

APA

Kato, S., Arasaki, K., Tokutomi, N., Imai, Y., Inoshita, T., Hattori, N., … Tagaya, M. (2021). Syntaxin 17, an ancient SNARE paralog, plays different and conserved roles in different organisms. Journal of Cell Science, 134(22). https://doi.org/10.1242/jcs.258699

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free