Fanconi anemia is a cancer-prone inherited bone marrow failure and cancer susceptibility syndrome with at least 13 complementation groups (FANCA, FANCB, FANCC, FANCD1, FANCD2 , FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, FANCM, and FANCN). Our laboratory has previously described several regulatory phosphorylation events for core complex member proteins FANCG and FANCA by phosphorylation. In this study, we report a novel phosphorylation site serine 331 (S331) of FANCD2, the pivotal downstream player of the Fanconi anemia pathway. Phosphorylation of S331 is important for its DNA damage-inducible monoubiquitylation, resistance to DNA cross-linkers, and in vivo interaction with FANCD1/ BRCA2. A phosphomimetic mutation at S331 restores all of these phenotypes to wild-type. In vitro and in vivo experiments show that phosphorylation of S331 is mediated by CHK1, the S-phase checkpoint kinase implicated in the Fanconi anemia DNA repair pathway. ©2009 American Association for Cancer Research.
CITATION STYLE
Zhi, G., Wilson, J. B., Chen, X., Krause, D. S., Xiao, Y., Jones, N. J., & Kupfer, G. M. (2009). Fanconi anemia complementation group FANCD2 protein serine 331 phosphorylation is important for Fanconi anemia pathway function and BRCA2 interaction. Cancer Research, 69(22), 8775–8783. https://doi.org/10.1158/0008-5472.CAN-09-2312
Mendeley helps you to discover research relevant for your work.