Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet

40Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Primary bronchial cancer accounts for almost 20% of all cancer death worldwide. One of the emerging techniques with tremendous power for lung cancer therapy is magnetic aerosol drug targeting (MADT). The use of a permanent magnet for effective drug delivery in a desired location throughout the lung requires extensive optimization, but it has not been addressed yet. In the present study, the possibility of using a permanent magnet for trapping the particles on a lung tumor is evaluated numerically in the Weibel's model from G0 to G3. The effect of different parameters is considered on the efficiency of particle deposition in a tumor located on a distant position of the lung bronchi and bronchioles. Also, the effective position of the magnetic source, tumor size, and location are the objectives for particle deposition. The results show that a limited particle deposition occurs on the lung branches in passive targeting. However, the incorporation of a permanent magnet next to the tumor enhanced the particle deposition fraction on G2 to up to 49% for the particles of 7 µm diameter. Optimizing the magnet size could also improve the particle deposition fraction by 68%. It was also shown that the utilization of MADT is essential for effective drug delivery to the tumors located on the lower wall of airway branches given the dominance of the air velocity and resultant drag force in this region. The results demonstrated the high competence and necessity of MADT as a noninvasive drug delivery method for lung cancer therapy.

Cite

CITATION STYLE

APA

Manshadi, M. K. D., Saadat, M., Mohammadi, M., Kamali, R., Shamsi, M., Naseh, M., & Sanati-Nezhad, A. (2019). Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet. Drug Delivery, 26(1), 120–128. https://doi.org/10.1080/10717544.2018.1561765

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free