In this paper, the unsteady magnetohydrodynamic (MHD) Couette flow of two non-Newtonian immiscible fluids micropolar and micropolar dusty (fluid-particle suspension) are considered in the horizontal channel with heat transfer. A comprehensive mathematical model and computational simulation with the modified cubic B-Spline-Differential Quadrature method (MCB-DQM) is described for unsteady flow. The coupled partial differential equation for fluid and particle-phase are formulated and the effect of viscous dissipation, Joule heating, Hall current, and other hydrodynamic and solutal parameters i. e. Reynolds number, Eckert number, particle concentration parameter, Eringen micropolar material parameter, time, viscosity ratio, and density ratio on the flow rate, micro rotation, and temperature characteristics were investigated. The analysis of obtained results reveals that the fluids and particle velocities are slightly decreasing with Hartmann number, and increasing with time, ion-slip, and Hall parameters. Microrotation declined with Microrotations dropped significantly with ion-slip and Hall parameter and grown Hartman number. The temperature begins to rise as time, Hartman number, and Eckert number grow and declined with Ion-slip and Hall parameter.
CITATION STYLE
Chandrawat, R. K., & Joshi, V. (2021). Numerical study of ion-slip and hall effect on couette flow of two immiscible micropolar and micropolar dusty fluid (fluid-particle suspension) with heat transfer. International Journal of Heat and Technology, 39(4), 1180–1196. https://doi.org/10.18280/ijht.390416
Mendeley helps you to discover research relevant for your work.