Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity

9Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Cisplatin-induced ototoxicity leads to hearing impairment, possibly through reactive oxygen species (ROS) production and DNA damage in cochlear hair cells (HC), although the exact mechanism is unknown. Avenanthramide-C (AVN-C), a natural, potent antioxidant, was evaluated in three study groups of normal adult C57Bl/6 mice (control, cisplatin, and AVN-C+cisplatin) for the prevention of cisplatin-induced hearing loss. Auditory brainstem responses and immunohistochemistry of outer hair cells (OHCs) were ascertained. Cell survival, ROS production, Phospho-H2AX-enabled tracking of DNA damage-repair kinetics, and expression levels of inflammatory cytokines (TNF-α, IL-1β, IL6, iNOS, and COX2) were assessed using House Ear Institute-Organ of Corti 1 (HEI-OC1 Cells). In the in vivo mouse model, following cisplatin-induced damage, AVN-C decreased the hearing thresholds and sheltered all cochlear turns’ OHCs. In HEI-OC1 cells, AVN-C preserved cell viability and decreased ROS production, whereas cisplatin enhanced both ROS levels and cell viability. In HEI-OC1 cells, AVN-C downregulated IL6, IL-1β, TNF-α, iNOS, and COX2 production that was upregulated by cisplatin treatment. AVN-C attenuated the cisplatin-enhanced nuclear H2AX activation. AVN-C had a strong protective effect against cisplatin-induced ototoxicity through inhibition of ROS and inflammatory cytokine production and DNA damage and is thus a promising candidate for preventing cisplatin-induced sensorineural hearing loss.

Cite

CITATION STYLE

APA

Umugire, A., Nam, Y. S., Nam, Y. E., Choi, Y. M., Choi, S. M., Lee, S., … Cho, H. H. (2023). Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032947

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free