Hereditary vitamin D-resistant rickets (HVDRR) is a rare autosomal recessive disease caused by mutations in the vitamin D receptor (VDR). Patients exhibit severe rickets and hypocalcemia. Heterozygous parents and siblings appear normal and exhibit no symptoms of the disease. We analyzed the VDR gene of a young girl who exhibited the clinical features of HVDRR without alopecia. The patient had clinical and radiographic features of rickets, hypocalcemia, and elevated serum concentrations of 1,25-dihydroxyvitamin D [1,25(OH) 2D]. A single heterozygous missense mutation was found in the VDR gene that substituted glutamic acid with alanine at amino acid 420 (E420A). Sequencing of the girl's VDR cDNAs showed that the f/M1 allele contained the E420A mutation, whereas the F/M4 allele was completely normal. The girl's father, who was also heterozygous for the E420A mutation on the f/M1 allele, exhibited minor symptoms of vitamin D resistance. In contrast, the mother had no signs of the disease and had no mutations in her VDR gene. Both the girl and the father's skin fibroblasts showed resistance to 1,25(OH) 2D 3 by their severely reduced induction of CYP24A1 gene expression. In transactivation assays, the E420A mutant VDR showed dominant-negative activity towards the wild-type VDR. This is the first report that we are aware of describing a patient with HVDRR caused by a single heterozygous missense mutation in the VDR gene. The E420A mutant appears to act in a dominant-negative fashion, silencing the wild-type VDR and resulting in an attenuated response to 1,25(OH) 2D 3. © 2011 American Society for Bone and Mineral Research.
CITATION STYLE
Malloy, P. J., Zhou, Y., Wang, J., Hiort, O., & Feldman, D. (2011). Hereditary vitamin D-resistant rickets (HVDRR) owing to a heterozygous mutation in the vitamin D receptor. Journal of Bone and Mineral Research, 26(11), 2710–2718. https://doi.org/10.1002/jbmr.484
Mendeley helps you to discover research relevant for your work.