This study is focused on a novel high-thermal-conductive C/C composite used in heat-redistribution thermal protection systems. The 3D mesophase pitch-based carbon fiber (CFMP) preform was prepared using CFMP in the X (Y) direction and polyacrylonitrile carbon fiber (CFPAN) in the Z direction. After the preform was densified by chemical vapor infiltration (CVI) and polymer infiltration and pyrolysis (PIP), the 3D high-thermal-conductive C/C (CMP/C) composite was obtained. The prepared CMP/C composite has higher thermal conduction in the X and Y directions. After an ablation test, the CFPAN becomes needle-shaped, while the CFMP shows a wedge shape. The fiber/matrix and matrix/matrix interfaces are preferentially oxidized and damaged during ablation. After being coated by SiC coating, the thermal conductivity plays a significant role in decreasing the hot-side temperature and protecting the SiC coating from erosion by flame. The SiC-coated CMP/C composite has better ablation resistance than the SiC-coated CPAN/C composite. The mass ablation rate of the sample is 0.19 mg·(cm-2·s-1), and the linear ablation rate is 0.52 μm·s-1.
CITATION STYLE
Ye, C., Huang, D., Li, B., Yang, P., Liu, J., Wu, H., … Li, X. (2019). Ablation behavior of the SiC-coated three-dimensional highly thermal conductive mesophase-pitch-based carbon-fiber-reinforced carbon matrix composite under plasma flame. Materials, 12(7). https://doi.org/10.3390/ma12172723
Mendeley helps you to discover research relevant for your work.