The current study addresses the impact of the addition of fullerene and graphene nanoparticles on the AC breakdown voltage (AC BdV) of natural ester (FR3). The nanofluids (NFs) were prepared following the two-step process, and the AC BdV was performed in compliance with IEC 60156 standards. Five different concentrations of NPs were considered (0.1 g/L, 0.2 g/L, 0.3 g/L, 0.4 g/L, and 0.5 g/L). A Student’s t-test was performed to compare the base liquid’s AC BdV data with different nanofluids. The experimental data were checked to see if they obeyed the Weibull distribution fitting curve, and the AC BdV at 1%, 10%, and 50% risk levels were then calculated. The performed t-test provides evidence that AC BdV data from the base liquid were different from those of different NFs (except 0.2 g/L fullerene, and 0.1 g/L and 0.4 g/L graphene NFs). It is also shown that the Weibull distribution fit the BdV data of all liquids (except 0.5 g/L fullerene NF), and remarkable improvements of AC BdVs at 1%, 10%, and 50% were observed. The best improvement was obtained with 0.4 g/L fullerene and 0.3 g/L graphene NFs. These results show the importance of using nanofluids as substitutes for the existing insulating liquids for current oil-filled power transformers.
CITATION STYLE
Khelifa, H., Vagnon, E., & Beroual, A. (2023). Effect of Fullerene and Graphene Nanoparticles on the AC Dielectric Strength of Natural Ester. Energies, 16(4). https://doi.org/10.3390/en16041995
Mendeley helps you to discover research relevant for your work.