Avian Diversity and Distributions and Their Evolution Through Space and Time

  • Schweizer M
  • Liu Y
N/ACitations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most modern orders of birds evolved and diversified during the last 65 million years following the demise of the nonavian dinosaurs and pterosaurs at the Cretaceous-Paleogene boundary. Diversification rates in birds increased from c. 50 million years ago onward driven by significant rate increases in different clades scattered throughout the entire phylogeny. No slowdown in the overall diversification rate has been identified, and equilibrium diversity might not have been reached. Birds breed on all of the continents on Earth and have adapted to almost every habitat. Substantial variation in distribution patterns occurs among the different species, ranging from narrow-range endemics restricted to a single oceanic island or to a particular habitat within a small geographic area to species with a near-cosmopolitan distribution, breeding on almost all continents. As in most groups, diversity of bird species is greatest in tropical regions near the equator and decreases toward the poles. This pattern, termed the latitudinal diversity gradient, cannot be causally linked to a single mechanism and might be influenced by both evolutionary and ecological processes. Species richness within a given area is basically the result of speciation, extinction, and dispersal. Speciation commences with the accumulation of genetically based divergence between populations and is completed by the development of reproductive isolation among them. This usually involves a phase of geographic separation of populations without contact, a process termed allopatric speciation. Speciation with ongoing gene flow between populations, i.e., parapatric speciation, and especially the evolution of reproductive isolation without geographic separation, i.e., sympatric speciation, appear rare in birds. Distribution patterns of different bird groups particularly across the Southern Hemisphere have for a long time been interpreted as being the result of vicariance evolution. Vicariance is considered to be the split of a geographical range of a species via a barrier caused by a historical event like montane uplift or the formation of oceans through tectonic rifting. The formation of such barriers should promote episodes of allopatric speciation in multiple clades, generating congruent biogeographic patterns among them. Using dated phylogenetic hypotheses, however, several studies have recently revealed discordance between sequences of geological events and phylogenetic patterns. Consequently, only past dispersal events, often over long distances and across oceans, can explain the current distribution patterns of several avian groups. In general, landscape changes might not result in congruent temporal diversification patterns among different bird groups. It can be assumed that the older an avian lineage is, the more time it has to colonize an area across a barrier. This increases the likelihood of dispersal across the barrier and subsequent diversification on either side of the divide. In addition, bird groups with lower dispersal abilities are expected to accumulate genetic differences among populations at a higher rate than lineages with higher dispersal capability. Consequently, diversification patterns are the result of interactions between ecological properties of different avian lineages and their environment as well as the age of a given lineage. Geographic ranges of birds are generally limited by a suite of biotic and abiotic factors. Range expansion is not only an important first step in speciation but also influences the number of coexisting species and thereby shapes the turnover of biodiversity in space and time.

Cite

CITATION STYLE

APA

Schweizer, M., & Liu, Y. (2018). Avian Diversity and Distributions and Their Evolution Through Space and Time (pp. 129–145). https://doi.org/10.1007/978-3-319-91689-7_8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free