View and Clothing Invariant Gait Recognition via 3D Human Semantic Folding

17Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel 3-dimensional (3D) human semantic folding is introduced to provide a robust and efficient gait recognition method which is invariant to camera view and clothing style. The proposed gait recognition method comprises three modules: (1) 3D body pose, shape and viewing data estimation network (3D-BPSVeNet); (2) gait semantic parameter folding model; and (3) gait semantic feature refining network. First, 3D-BPSVeNet is constructed based on a convolution gated recurrent unit (ConvGRU) to extract 2-dimensional (2D) to 3D body pose and shape semantic descriptors (2D-3D-BPSDs) from a sequence of gait parsed RGB images. A 3D gait model with virtual dressing is then constructed by morphing the template of 3D body model using the estimated 2D-3D-BPSDs and the recognized clothing styles. The more accurate 2D-3D-BPSDs without clothes are then obtained by using the silhouette similarity function when updating the 3D body model to fit the 2D gait. Second, the intrinsic 2D-3D-BPSDs without interference from clothes are encoded by sparse distributed representation (SDR) to gain the binary gait semantic image (SD-BGSI) in a topographical semantic space. By averaging the SD-BGSIs in a gait cycle, a gait semantic folding image (GSFI) is obtained to give a high-level representation of gait. Third, a gait semantic feature refining network is trained to refine the semantic feature extracted directly from GSFI using three types of prior knowledge, i.e., viewing angles, clothing styles and carrying condition. Experimental analyses on CMU MoBo, CASIA B, KY4D, OU-MVLP and OU-ISIR datasets show a significant performance gain in gait recognition in terms of accuracy and robustness.

Cite

CITATION STYLE

APA

Luo, J., & Tjahjadi, T. (2020). View and Clothing Invariant Gait Recognition via 3D Human Semantic Folding. IEEE Access, 8, 100365–100383. https://doi.org/10.1109/ACCESS.2020.2997814

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free