Traffic congestion at junctions is a serious issue on a daily basis. The prevailing traffic light controllers are unable to manage the different traffic flows. Most of the current systems operate on a timing mechanism that changes the signal after a particular interval of time. This may cause frustration and result in motorist's time waste. Traffic congestion is a major problem in the currently existing systems. Delays, safety, parking, and environmental problems are the main issues of current traffic systems that emit smoke and contribute to increasing Global Warming. Sensor-based systems reduce the waiting time and maximize the total number of vehicles that can cross an intersection. Our proposed system can control the traffic lights based on image processing without the need for traffic police. This can reduce congestion, delay, road accidents, need for manpower. Under image processing, we use sub techniques like RGB to Gray conversion, Image resizing, Image Enhancement, Edge detection, Image matching, and Timing allocation. A real-time image is captured for every 1 second. After edge detection procedure for both reference and real-time images, these images are compared using SURF Algorithm. Then the amount of traffic is detected and the details are stored in the server. Arduino is used for a traffic signal in the hardware part. It consists of a Wi-Fi module. The micro-controller used in the system Arduino. Four cameras are placed on respective roads and these cameras are used to capture images to analyze traffic density. Then the traffic signals are decided according to the density of traffic. Our technique can be effective to combat traffic on Indian Roads. A lot of time can be saved by deploying this system and also it conserves a lot of resources as well as the economy
CITATION STYLE
Et. al., L. M. (2021). Traffic Light Controller using Image Processing. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 405–411. https://doi.org/10.17762/turcomat.v12i2.824
Mendeley helps you to discover research relevant for your work.