Odontogenic effects of two calcium silicate-based biomaterials in human dental pulp cells

8Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Background. The goal of treating exposed pulp with an appropriate pulp capping material is to promote the dentinogenic potential of the pulpal cells. There have been recent attempts to develop more effective pulp-capping materials. Objectives. The aim of this study was to evaluate the effect of newly developed calcium silicate-based material on odontogenic differentiation of primary human dental pulp cells (HDPCs), in comparison with a contemporary calcium silicate-based material. Material and methods. Human dental pulp cells isolated from dental pulps were cultured in standard culture conditions in Dulbecco’s Modified Eagle’s Medium (DMEM) and then the effects of Micro-Mega mineral trioxide aggregate (MM-MTA) (Micro-Mega, Besançon, France) and ProRoot MTA (MTA) (Dentsply Sirona, Tulsa, USA) (positive control) were evaluated on HDPCs at 1, 7 and 14 days. Untreated cells were used as a negative control. Odontoblastic differentiation was assessed by alkaline phosphatase (ALP) activity. Runt-related transcription factor 2 (RUNX2), alkaline phosphatase liver/bone/kidney (ALPL), bone morphogenetic protein 2 (BMP2), dentin sialophosphoprotein (DSPP), and Distal-less homeobox 3 (DLX3), as odontoblastic/ osteoblastic expression markers, were evaluated by semi-quantitative real-time polymerase chain reaction (RT-PCR) analysis. Calcium levels of culture media were also determined. Results. The MM-MTA group significantly increased the expression of BMP2 compared with that of the MTA group at 3 different time periods (p < 0.05). The up-regulation of ALPL between day 1 and 14 and the up-regulation of DSPP between day 7 and 14 were significant in both groups (p < 0.05). Micro-Mega MTA and MTA exhibited similar messenger RNA (mRNA) expression levels of ALPL, DSPP, RUNX2, DLX3, and ALP activities, as well as calcium levels. Conclusions. Based on the cell responses observed in this study, MM-MTA might be used efficiently in dental pulp therapy as a potential alternative to MTA.

Cite

CITATION STYLE

APA

Önay, E. O., Yurtcu, E., Terzi, Y. K., Üngör, M., Oguz, Y., & Şahin, F. I. (2018). Odontogenic effects of two calcium silicate-based biomaterials in human dental pulp cells. Advances in Clinical and Experimental Medicine, 27(11), 1541–1547. https://doi.org/10.17219/acem/74197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free