Bacteria that have the capacity to fill the same niche will compete with one another for the space and resources available within an ecosystem. Such competition is heightened among different strains of the same bacterial species. Nevertheless, different strains often inhabit the same host. The molecular mechanisms that impact competition between different strains within the same host are poorly understood. To address this knowledge gap, the type VI secretion system (T6SS), which is a mechanism for bacteria to kill neighboring cells, was examined in the marine bacterium Vibrio fischeri. Different strains of V. fischeri naturally colonize the light organ of the bobtail squid Euprymna scolopes. The genome of FQ-A001, a T6SSpositive strain, features two hcp genes that are predicted to encode identical subunits of the T6SS. Coincubation assays showed that either hcp gene is sufficient for FQ-A001 to kill another strain via the T6SS in vitro. Additionally, induction of hcp expression is sufficient to induce killing activity in an FQ-A001 mutant lacking both hcp genes. Squid colonization assays involving inocula of FQ-A001-derived strains mixed with ES114 revealed that both hcp genes must be deleted for FQ-A001 and ES114 to occupy the same space within the light organ. These experimental results provide insight into the genetic factors necessary for the T6SS of V. fischeri to function in vivo, thereby increasing understanding of the molecular mechanisms that impact strain diversity within a host.
CITATION STYLE
Guckes, K. R., Cecere, A. G., Wasilko, N. P., Williams, A. L., Bultman, K. M., Mandel, M. J., & Miyashiro, T. (2019). Incompatibility of vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. Journal of Bacteriology, 201(19). https://doi.org/10.1128/JB.00221-19
Mendeley helps you to discover research relevant for your work.