Conjuring up our thoughts, language reflects statistical patterns of word co-occurrences which in turn come to describe how we perceive the world. Whether counting how frequently nouns and verbs combine in Google search queries, or extracting eigenvectors from term document matrices made up of Wikipedia lines and Shakespeare plots, the resulting latent semantics capture not only the associative links which form concepts, but also spatial dimensions embedded within the surface structure of language. As both the shape and movements of objects have been found to be associated with phonetic contrasts already in toddlers, this study explores whether articulatory and acoustic parameters may likewise differentiate the latent semantics of action verbs. Selecting 3 ? 20 emotion-, face-, and handrelated verbs known to activate premotor areas in the brain, their mutual cosine similarities were computed using latent semantic analysis LSA, and the resulting adjacency matrices were compared based on two different large scale text corpora: HAWIK and TASA. Applying hierarchical clustering to identify common structures across the two text corpora, the verbs largely divide into combined mouth and hand movements versus emotional expressions. Transforming the verbs into their constituent phonemes, and projecting them into an articulatory space framed by tongue height and formant frequencies, the clustered small and large size movements appear differentiated by front versus back vowels corresponding to increasing levels of arousal. Whereas the clustered emotional verbs seem characterized by sequences of close versus open jaw produced phonemes, generating up- or downwards shifts in formant frequencies that may influence their perceived valence. Suggesting, that the latent semantics of action verbs reflect parameters of intensity and emotional polarity that appear correlated with the articulatory contrasts and acoustic characteristics of phonemes.
CITATION STYLE
Petersen, M. K. (2015). Latent semantics of action verbs reflect phonetic parameters of intensity and emotional content. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0121575
Mendeley helps you to discover research relevant for your work.