Exploring Reusability of Disposable Face Masks: Effects of Disinfection Methods on Filtration Efficiency, Breathability, and Fluid Resistance

12Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To curb the spread of the COVID-19 virus, the use of face masks such as disposable surgical masks and N95 respirators is being encouraged and even enforced in some countries. The widespread use of masks has resulted in global shortages and individuals are reusing them. This calls for proper disinfection of the masks while retaining their protective capability. In this study, the killing efficiency of ultraviolet-C (UV-C) irradiation, dry heat, and steam sterilization against bacteria (Staphylococcus aureus), fungi (Candida albicans), and nonpathogenic virus (Salmonella virus P22) is investigated. UV-C irradiation for 10 min in a commercial UV sterilizer effectively disinfects surgical masks. N95 respirators require dry heat at 100 °C for hours while steam treatment works within 5 min. To address the question on safe reuse of the disinfected masks, their bacteria filtration efficiency, particle filtration efficiency, breathability, and fluid resistance are assessed. These performance factors are unaffected after 5 cycles of steam (10 min per cycle) and 10 cycles of dry heat at 100 °C (40 min per cycle) for N95 respirators, and 10 cycles of UV-C irradiation for surgical masks (10 min per side per cycle). These findings provide insights into formulating the standard procedures for reusing masks without compromising their protective ability.

Cite

CITATION STYLE

APA

Teo, J. Y., Kng, J., Periaswamy, B., Liu, S., Lim, P. C., Lee, C. E., … Yang, Y. Y. (2021). Exploring Reusability of Disposable Face Masks: Effects of Disinfection Methods on Filtration Efficiency, Breathability, and Fluid Resistance. Global Challenges, 5(11). https://doi.org/10.1002/gch2.202100030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free