Signaling pathway components mediating Epstein-Barr virus (EBV) reactivation by 12-O-tetradecanoylphorbol-13-acetate (TPA) were characterized in terms of induction and modification of specific transacting factors. The consequences of protein kinase C (PKC) activation by TPA in inhibiting inducible nitric oxide synthase (iNOS) mRNA expression were analyzed in the EBV-infected gastric epithelial cell line GT38. Spontaneous expression of the EBV BZLF1 gene product ZEBRA became undetectable upon long-term culturing of GT38 cells, while iNOS mRNA expression increased. In such cells the PKC inhibitors 1-(5-isoquinolinesulphonyl)-2,5-dimethylpiperazine (H7) and staurosporine inhibited TPA-induced expression of BZLF1 and BRLF1 and reversed TPA-mediated inhibition of iNOS gene expression. The mitogen-activated protein kinase inhibitor PD98059 inhibited TPA-induced BZLF1 expression. Electrophoretic mobility shift assays demonstrated that transcription factors NF-κB and AP-1 were also activated by TPA in a time-dependent manner. The TPA-induced NF-κB activation was inhibited by prior treatment of the cells with the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). TPA-induced BZLF1 expression was also inhibited by the treatment with PDTC. Northern blot analyses characterized changes in levels of the c-jun and junB expressions of the AP-1 family. These results show that TPA induces EBV reactivation via NF-κB and AP-1 and that PKC is an important mediator in regulating gene expression leading to EBV reactivation after TPA treatment of GT38 cells. © 2001 Academic Press.
CITATION STYLE
Gao, X., Ikuta, K., Tajima, M., & Sairenji, T. (2001). 12-O-tetradecanoylphorbol-13-acetate induces Epstein-Barr virus reactivation via NF-κB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology, 286(1), 91–99. https://doi.org/10.1006/viro.2001.0965
Mendeley helps you to discover research relevant for your work.