Adaptive computation offloading for mobile augmented reality

12Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Augmented reality (AR) underpins many emerging mobile applications, but it increasingly requires more computation power for better machine understanding and user experience. While computation offloading promises a solution for high-quality and interactive mobile AR, existing methods work best for high-definition videos but cannot meet the real-time requirement for emerging 4K videos due to the long uploading latency. We introduce ACTOR, a novel computation-offloading framework for 4K mobile AR. To reduce the uploading latency, ACTOR dynamically and judiciously downscales the mobile video feed to be sent to the remote server. On the server-side, it leverages image super-resolution technology to scale back the received video so that high-quality object detection, tracking and rendering can be performed on the full 4K resolution. ACTOR employs machine learning to predict which of the downscaling resolutions and super-resolution configurations should be used, by taking into account the video content, server processing delay, and user expected latency. We evaluate ACTOR by applying it to over 2,000 4K video clips across two typical WiFi network settings. Extensive experimental results show that ACTOR consistently and significantly outperforms competitive methods for simultaneously meeting the latency and user-perceived video quality requirements.

Cite

CITATION STYLE

APA

Ren, J., Gao, L., Wang, X., Ma, M., Qiu, G., Wang, H., … Wang, Z. (2021). Adaptive computation offloading for mobile augmented reality. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(4). https://doi.org/10.1145/3494958

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free