It is increasingly clear that castration-resistant prostate cancer (PCa) is dependent on the androgen receptor (AR). This has led to the use of anti-androgen therapies that reduce endogenous steroid hormone production as well as the use of AR antagonists. However, the AR does not act in isolation and integrates with a milieu of cell-signaling proteins to affect cell biology. It is well established that cancer is a genetic disease resulting from the accumulation of mutations and chromosomal translocations that enables cancer cells to survive, proliferate, and disseminate. To maintain genomic integrity, there exists conserved checkpoint signaling pathways to facilitate cell cycle delay, DNA repair, and/or apoptosis in response to DNA damage. The AR interacts with, affects, and is affected by these DNA damage-response proteins. This review will focus on the connections between checkpoint signaling and the AR in PCa. We will describe what is known about how components of checkpoint signaling regulate AR activity and what questions still face the field.
CITATION STYLE
Ta, H. Q., & Gioeli, D. (2014, October 1). The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocrine-Related Cancer. BioScientifica Ltd. https://doi.org/10.1530/ERC-14-0217
Mendeley helps you to discover research relevant for your work.