Lipoprotein(a)

29Citations
Citations of this article
112Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lipoprotein(a) [Lp(a)] is an atherogenic lipoprotein with a strong genetic regulation. Up to 90% of the concentrations are explained by a single gene, the LPA gene. The concentrations show a several-hundred-fold interindividual variability ranging from less than 0.1 mg/dL to more than 300 mg/dL. Lp(a) plasma concentrations above 30 mg/dL and even more above 50 mg/dL are associated with an increased risk for cardiovascular disease including myocardial infarction, stroke, aortic valve stenosis, heart failure, peripheral arterial disease, and all-cause mortality. Since concentrations above 50 mg/dL are observed in roughly 20% of the Caucasian population and in an even higher frequency in African-American and Asian-Indian ethnicities, it can be assumed that Lp(a) is one of the most important genetically determined risk factors for cardiovascular disease. Carriers of genetic variants that are associated with high Lp(a) concentrations have a markedly increased risk for cardiovascular events. Studies that used these genetic variants as a genetic instrument to support a causal role for Lp(a) as a cardiovascular risk factor are called Mendelian randomization studies. The principle of this type of studies has been introduced and tested for the first time ever with Lp(a) and its genetic determinants. There are currently no approved pharmacologic therapies that specifically target Lp(a) concentrations. However, some therapies that target primarily LDL cholesterol have also an influence on Lp(a) concentrations. These are mainly PCSK9 inhibitors that lower LDL cholesterol by 60% and Lp(a) by 25–30%. Furthermore, lipoprotein apheresis lowers both, Lp(a) and LDL cholesterol, by about 60–70%. Some sophisticated study designs and statistical analyses provided support that lowering Lp(a) by these therapies also lowers cardiovascular events on top of the effect caused by lowering LDL cholesterol, although this was not the main target of the therapy. Currently, new therapies targeting RNA such as antisense oligonucleotides (ASO) or small interfering RNA (siRNA) against apolipoprotein(a), the main protein of the Lp(a) particle, are under examination and lower Lp(a) concentrations up to 90%. Since these therapies specifically lower Lp(a) concentrations without influencing other lipoproteins, they will serve the last piece of the puzzle whether a decrease of Lp(a) results also in a decrease of cardiovascular events.

Cite

CITATION STYLE

APA

Kronenberg, F. (2022). Lipoprotein(a). In Handbook of Experimental Pharmacology (Vol. 270, pp. 201–232). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/164_2021_504

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free