Synthesis of oxetane and azetidine ethers as ester isosteres by Brønsted acid catalysed alkylation of alcohols with 3-aryl-oxetanols and 3-aryl-azetidinols

9Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Oxetanes and azetidines continue to draw significant interest in medicinal chemistry, as small, polar and non-planar motifs. Oxetanes also represent interesting surrogates for carbonyl-containing functional groups. Here we report a synthesis of 3,3-disubstituted oxetane- and azetidine-ethers, with comparisons made to the ester functional group. The tertiary benzylic alcohols of the 4-membered rings are selectively activated using Brønsted acid catalysis and reacted with simple alcohols to form the ethers and maintain the oxetane ring intact. This approach avoids the use of strong bases and halide alkylating agents and allows alcohol libraries to be leveraged. Oxetane ethers demonstrate excellent chemical stability across a range of conditions and an improved stability vis-à-vis analogous esters under basic and reducing conditions.

Cite

CITATION STYLE

APA

Saejong, P., Rojas, J. J., Denis, C., White, A. J. P., Voisin-Chiret, A. S., Choi, C., & Bull, J. A. (2023). Synthesis of oxetane and azetidine ethers as ester isosteres by Brønsted acid catalysed alkylation of alcohols with 3-aryl-oxetanols and 3-aryl-azetidinols. Organic and Biomolecular Chemistry, 21(27), 5553–5559. https://doi.org/10.1039/d3ob00731f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free