Isoproterenol-mediated heme oxygenase-1 induction inhibits high mobility group box 1 protein release and protects against rat myocardial ischemia/reperfusion injury in vivo

9Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Isoproterenol (ISO) has been reported to inhibit high mobility group box 1 (HMGB1) protein release via heme oxygenase-1 (HO-1) induction in lipopolysaccharide (LPS)-activated RAW 264.7 cells and increase the survival rate of cecal ligation and puncture (CLP)-induced septic mice. Therefore, it was examined whether ISO-mediated HO-1 induction inhibits HMGB1 release in cardiac myocytes and attenuates myocardial ischemia/reperfusion (I/R) injury in rats. Anesthetized male rats were pretreated with ISO [intraperitoneal (i.p.) injection of 10 mg/kg] prior to ischemia in the absence and/or presence of zinc protoporphyrin IX (ZnPPIX, i.p., 10 mg/kg), which is an inhibitor of HO-1, and then subjected to ischemia for 30 min followed by reperfusion for 24 h. The myocardial I/R injury and oxidative stress were assessed. In addition, the HO-1 protein and HMGB1 expression were measured by western blot analysis. ISO significantly attenuated the myocardial I/R injury, reduced oxidative stress, and induced HO-1 and reduced HMGB1 release. However, all these effects caused by ISO were significantly reversed in the presence of ZnPPIX. These results suggested that ISO has a pivotal role in the protective effects on myocardial I/R injury. This protection mechanism is possibly due to the inhibition of HMGB1 release via the induction of HO-1.

Cite

CITATION STYLE

APA

Wang, J., Hu, X., Fu, W., Xie, J., Zhou, X., & Jiang, H. (2014). Isoproterenol-mediated heme oxygenase-1 induction inhibits high mobility group box 1 protein release and protects against rat myocardial ischemia/reperfusion injury in vivo. Molecular Medicine Reports, 9(5), 1863–1868. https://doi.org/10.3892/mmr.2014.2026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free