Effects of delaying puberty on bone mineralization in female rats

16Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effect of delaying puberty on bone mineralization was studied using female rats as a model. Repeated injections of gonadotrophin-releasing hormone antagonist (GnRHa) were used to suppress the onset of puberty from the age of 6-10 weeks. A group of control female rats was given aqueous solution injections at the same age and for the same duration. The effect of delaying puberty on bone mineralization was examined using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computerized tomography (QCT), both methods being adapted for small animals. Bone mineral parameters were measured at baseline and at the ages of 10, 17 and 24 weeks in total body, femur and spine. Compared to controls, bone mineral content (BMC) and bone mineral density (BMD), as measured by DXA, were significantly decreased in GnRHa-treated rats in total body and femur at 10 and 24 weeks of age (P < 0.05). The results were even more significant after adjusting for weight. After this adjustment, spine BMC and BMD at 10, 17 and 24 weeks were significantly lower in the treatment group (P < 0.05). Trabecular BMD at the distal femur in the GnRHa treated group as measured by peripheral QCT was significantly lower (P < 0.05). However, cortical bone in the mid-femur had higher BMD, concurrent with lower cortical thickness in the treatment group. In conclusion, a delay in the onset of sexual maturation may cause prolonged, possibly irreversible defect in bone mineralization.

Cite

CITATION STYLE

APA

Rakover, Y., Lu, P., Briody, J. N., Tao, C., Weiner, E., Ederveen, A. G. H., … Ben-Shlomo, I. (2000). Effects of delaying puberty on bone mineralization in female rats. Human Reproduction, 15(7), 1457–1461. https://doi.org/10.1093/humrep/15.7.1457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free